彩票网-捕鱼

學(xué)術(shù)預(yù)告 首頁(yè)  >  學(xué)術(shù)科研  >  學(xué)術(shù)預(yù)告  >  正文

三元名家論壇-Stein variational gradient descent with local approximations
作者:     供圖:     供圖:     日期:2021-12-13     來(lái)源:    

講座主題:Stein variational gradient descent with local approximations

專家姓名:閆亮

工作單位:東南大學(xué)

講座時(shí)間:2021年12月16日 9:00-10:00

講座地點(diǎn):騰訊會(huì)議,會(huì)議ID:403792057

主辦單位:煙臺(tái)大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院

內(nèi)容摘要:

Bayesian computation plays an important role in modern machine learning and statistics to reason about uncertainty. A key computational challenge in Bayesian inference is to develop efficient techniques to approximate, or draw samples from posterior distributions. Stein variational gradient decent (SVGD) has been shown to be a powerful approximate inference algorithm for this issue. However, the vanilla SVGD requires calculating the gradient of the target density and cannot be applied when the gradient is unavailable or too expensive to evaluate. In this talk, we explore one way to address this challenge by the construction of a local surrogate for the target distribution in which the gradient can be obtained in a much more computationally feasible manner. More specifically, we approximate the forward model using a deep neural network (DNN) which is trained on a carefully chosen training set, which also determines the quality of the surrogate. To this end, we propose a general adaptation procedure to refine the local approximation online without destroying the convergence of the resulting SVGD. This significantly reduces the computational cost of SVGD and leads to a suite of algorithms that are straightforward to implement. The new algorithm is illustrated on a set of challenging Bayesian inverse problems, and numerical experiments demonstrate a clear improvement in performance and applicability of standard SVGD.

主講人介紹:

閆亮,東南大學(xué)副教授、博士生導(dǎo)師。主要從事不確定性量化、貝葉斯反問(wèn)題理論與算法的研究。2018年入選東南大學(xué)“至善青年學(xué)者”(A層次)支持計(jì)劃,2017年入選江蘇省高校“青藍(lán)工程”優(yōu)秀青年骨干教師培養(yǎng)對(duì)象。目前主持國(guó)家自然科學(xué)基金面上項(xiàng)目?jī)身?xiàng),主持完成國(guó)家自然科學(xué)基金青年項(xiàng)目和江蘇省自然科學(xué)基金青年項(xiàng)目各一項(xiàng)。已經(jīng)在《SIAM J. Sci. Comput.》、《Inverse Problems》、《J. Comput. Phys.》等國(guó)內(nèi)外刊物上發(fā)表30多篇學(xué)術(shù)論文.

大发888娱乐城888| 澳门银河娱乐| 百家乐怎样出千| 百家乐官网概率下注法| 大发888娱乐场官方下载| 星期8百家乐官网娱乐城| 现金百家乐游戏| 百家乐游戏真钱游戏| 有百家乐官网的棋牌游戏| 威尼斯人娱乐平台官网| 百家乐官网百战百胜| 百家乐官网获胜秘决| 大发888在线娱乐二十一点 | 百家乐官网统计软件| 百家乐官网博彩策略论坛| 大发888博必发| 博彩百家乐官网带连线走势图| 博客国际娱乐| 太阳城酒店| 百家乐怎么压对子| 百家乐官网龙虎扑克牌游戏技巧打| 芮城县| 盈丰娱乐| 大发888官方6222.| 太阳城真人娱乐城| 百家乐网上投注代理商| 怎样看百家乐路纸| 战神百家乐官网的玩法技巧和规则 | 红宝石百家乐娱乐城| 百家乐庄闲机率| 百家乐官网游戏辅助| 百家乐官网新台第二局| 利高娱乐| 足球平台开户| 百家乐缩水软件| 全讯网网站xb112| 威尼斯人娱乐城上不了| 太阳城丝巾| 大发888玩法| 大发888娱乐场df888| 大发888什么赢钱快|