彩票网-捕鱼

學(xué)術(shù)預(yù)告 首頁  >  學(xué)術(shù)科研  >  學(xué)術(shù)預(yù)告  >  正文

三元名家論壇:Piecewise ensemble averaging stochastic Liouville equations for simulating non-Markovian quantum dynamics
作者:     供圖:     供圖:     日期:2022-08-25     來源:    

講座主題:Piecewise ensemble averaging stochastic Liouville equations for simulating non-Markovian quantum dynamics

專家姓名:嚴(yán)運(yùn)安

工作單位:魯東大學(xué)

講座時(shí)間:2022年8月29日10:00-11:00

講座地點(diǎn):物電學(xué)院1511報(bào)告廳

主辦單位:煙臺(tái)大學(xué)物理與電子信息學(xué)院

內(nèi)容摘要:

The stochastic scheme is a fruitful tool for simulating the challenging non-Markovian quantum dynamics. Its performance at long time, however, degrades due to the intrinsic fast increase in the variance of the quantum Brownian motion. This talk presents the recent progress on developing the stochastic Liouville equations with piecewise stationary noises. Starting from a conventional stochastic scheme, we can always decompose the involved noises into two parts: the principal part assuming piecewise correlations and the auxiliary part recovering the full correlation. A partial stochastic average over the auxiliary noises yields a stochastic Liouville equation that only involves noises with piecewise correlations and can hence be averaged separatedly for different time intervals. Meanwhile the dissipative influence of the auxiliary noises is rigorously incorporated with integrals over the functional derivatives with respect to the principal noises. The working equation now assumes a similar structure to the non-Markovian quantum state diffusion. Thanks to the noise disentanglement in different time intervals, we can perform piecewise ensemble average and serve the average of the preceding interval as the initial condition of the subsequent propagation. This strategy avoids the long-time stochastic average and the corresponding statistical errors will be saturated at long times. This talk will give numerical results for the spontaneous decay of two-state atoms and the spin-boson model and shows that the suggested method enables us to simulate the long-time quantum dissipative dynamics with long memories in the non-perturbative regime.

主講人介紹:

嚴(yán)運(yùn)安,魯東大學(xué)教授。2002年于中國科學(xué)院理論物理研究所獲博士學(xué)位,2002-2012年,先后在中國科學(xué)院化學(xué)研究所、美國德克薩斯理工大學(xué)、德國柏林自由大學(xué)、德國羅斯托克大學(xué)和日本九州大學(xué)進(jìn)行博士后和訪問學(xué)者研究,2012年加入貴州師范學(xué)院,2018年加入魯東大學(xué)。嚴(yán)運(yùn)安教授目前的研究方向是發(fā)展新方法模擬凝聚相中分子體系的耗散動(dòng)力學(xué)。

线上真人游戏| 网上百家乐大赢家筹码| 362百家乐官网的玩法技巧和规则| 百家乐官网赌博策略| 先锋百家乐的玩法技巧和规则 | 网络百家乐| 真人百家乐视频| 沙龙百家乐官网赌场娱乐网规则 | 游戏百家乐庄闲| bet365百家乐| 百家乐真人游戏网上投注| 赌百家乐容易的原| 百家乐官网的奥秘| 百家乐押注方法| 打百家乐官网纯打庄的方法| 六合彩图纸| 百家乐官网论坛bocaila| 盐城百家乐的玩法技巧和规则| 澳门百家乐官网博彩网| 百家乐分析软体| 娱乐城大全| 金殿百家乐的玩法技巧和规则| 百家乐现金网排名| 蒙特卡罗国际网址| 网络百家乐路单图| 百家乐官网美国玩法| 大发888老虎机手机版| 百家乐官网如何买大小| 乐平市| 威尼斯人娱乐场安全吗| 贵族百家乐官网的玩法技巧和规则| 美高梅娱乐| 大发888娱乐场168| 赌博百家乐游戏| 百家乐官网规| 百家乐官网正负计| 澳门百家乐官网真人娱乐城| 娱乐博彩| 百家乐官网如何必胜| 澳门足球博彩官网| 大发888游戏平台 46|