彩票网-捕鱼

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“慶祝建校四十年”系列學術活動之三元名家論壇:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades
作者:     供圖:     供圖:     日期:2024-11-11     來源:    

講座主題:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades

專家姓名:王驥

工作單位:廈門大學

講座時間:2024年11月12日10:00-10:40

講座地點:數學院大會議室341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

Adaptive safe control employing conventional continuous infinite-time adaptation requires that the initial conditions be restricted to a subset of the safe set due to parametric uncertainty, where the safe set is shrunk in inverse proportion to the adaptation gain. The recent regulation-triggered adaptive control approach with batch least-squares identification (BaLSI, pronounced ``ballsy'') completes perfect parameter identification in finite time and offers a previously unforeseen advantage in adaptive safe control. Since the true challenge of safe control is exhibited for CBF of a high relative degree, we undertake a safe BaLSI design for a class of systems that possess a particularly extreme relative degree: ODE-PDE-ODE sandwich systems. Such sandwich systems arise in various applications, including delivery UAVs (Unmanned Aerial Vehicles) with a cable-suspended load. Collision avoidance of the payload with the surrounding environment is required. The considered class of plants is coupled hyperbolic PDEs sandwiched by a strict-feedback nonlinear ODE and a linear ODE, where the unknown coefficients, whose bounds are known and arbitrary, are associated with the PDE in-domain coupling terms that can cause instability and with the input signal of the distal ODE. We introduce the concept of PDE CBF whose non-negativity as well as the ODE CBF's non-negativity are ensured with a backstepping-based safety filter. Our safe adaptive controller is explicit and operates in the entire original safe set. The designed controller guarantees: 1) the finite-time exact parameter identification of the unknown parameters; 2) the safety of the state furthermost from the control input; 3) the exponential regulation of the overall plant state to zero.

主講人介紹:

王驥,2018獲重慶大學機械工程博士學位,2019-2021加州大學圣地亞哥分校機械與航空工程系博士后。目前是廈門大學航空航天學院副教授,入選廈門大學“南強青年拔尖人才支持計劃”。主要從事分布參數系統邊界控制理論及其在柔性機械結構中的應用研究。以第一作者在控制領域頂刊IEEE TAC和 Automatica發表論文13篇(長文12篇),出版學術專著一部(Princeton University Press)。目前擔任Systems & Control Letters編委。

百家乐赌场赌场平台| 百家乐做庄家必赢诀窍| 百家乐官网赌大小| 大发888娱乐城官方网站lm0| 江山百家乐官网的玩法技巧和规则| 大发888 备用6222| 网上百家乐玩法| 郓城县| 百家乐英皇娱乐平台| 闲和庄百家乐官网娱乐平台| 万博国际| 百家乐破解秘| 塑料百家乐官网筹码| 大发888老虎机平台| 百家乐官网群详解包杀| 玩百家乐官网技巧博客| 玩百家乐官网输了| 顺平县| 娱乐网百家乐的玩法技巧和规则 | 甘泉县| 星空棋牌舟山清墩| 如何胜百家乐的玩法技巧和规则| 百家乐官网规| 百家乐官网比赛技巧| 大发888为什么这么卡| 百家乐双人操作分析仪| 风水上看做生意养金毛好吗| 百家乐官网娱乐城备用网址| 百家乐官网出租平台| 大发888娱乐城下载新澳博| 视频百家乐是真是假| 九头鸟棋牌游戏中心| 多台百家乐的玩法技巧和规则| 百家乐视频中国象棋| 欧凯百家乐官网的玩法技巧和规则 | 网络百家乐会输钱的多吗| 百家乐网络赌博真假| 百家乐如何计牌| 百家乐闲拉长龙| 茅台百家乐官网的玩法技巧和规则| 香港百家乐官网赌城|