彩票网-捕鱼

學術預告 首頁  >  學術科研  >  學術預告  >  正文

三元名家論壇:Stability and error estimation based on a difference-spectral approximation for Cahn-Hilliard equation in complex domains
作者:     供圖:     供圖:     日期:2025-05-06     來源:    

講座主題:Stability and error estimation based on a difference-spectral approximation for Cahn-Hilliard equation in complex domains

專家姓名:安靜

工作單位:貴州師范大學

講座時間:2025年05月07日14:00-15:00

講座地點:數學院大會議室341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

In this paper, we introduce and investigate a novel numerical method for solving the Cahn-Hilliard equation in two-dimensional complex domains by employing region transformation. Initially, we convert the fourth-order equation into a second-order coupled system and formulate its first- and second-order semi-implicit schemes. Afterwards, we transform them into the polar coordinates equivalents. By introducing a category of weighted Sobolev spaces, we elaborate on fully discrete schemes and offer a theoretical validation of their stability. In particular, the introduction of pole singularities and the nonlinearity of the coupling problem pose significant challenges to theoretical analysis. To address these challenges, we introduce a novel class of projection operators and establish their approximation properties. Leveraging these properties, we provide error estimates for the approximate solutions. To validate our theoretical insights and algorithm's efficacy, we conclude with a series of numerical examples.

主講人介紹:

安靜,貴州師范大學教授,博士生導師,主持完成國家自然科學基金項目3項,在研國家自然科學基金項目1項,在SIAM J NUMER ANAL、J SCI COMPUT、APPL NUMER MATH等期刊發表SCI學術論文30余篇。

百家乐视频游戏帐号| 真人百家乐官网娱乐场| 大发888下载 34| 高楼24层风水好吗| 樟树市| 百家乐小九梭哈| 嘉年华百家乐官网的玩法技巧和规则 | 大发888官方注册| 长方形百家乐筹码| 网上赌百家乐官网的玩法技巧和规则| 深水埗区| 威尼斯人娱乐场开户注册| 顶级赌场手机版| 百家乐庄闲排列| 百家乐官网皇室百家乐官网| 百家乐官网风云论坛| 总统娱乐城能赢钱吗| 百家乐的桌布| 24鸡是什么命| 百家乐官网博彩网太阳城娱乐城| 百家乐官网平7s88| 来博百家乐官网现金网| 全球最大赌博网站| 大发888下载娱乐场| 百家乐出千桌| 百家乐特殊计| 百家乐最新的投注方法| 大发百家乐现金网| 百家乐官网有没有破解之法| 百家乐官网庄闲最佳打法| 赛马会娱乐城| 本溪亿酷棋牌下载| 单机百家乐的玩法技巧和规则| 百家乐官网用品| 伯爵百家乐官网的玩法技巧和规则| 百家乐官网赌博娱乐| 百家乐官网小音箱| 百家乐官网在线直播| 运城市| 百家乐官网星级游戏| 伟德亚洲|