講座主題:Semiparametric Bayesian analysis of accelerated failure time models with cluster structures
專家姓名:沈俊山
工作單位:首都經貿大學
講座時間:2017年7月28日10:10
講座地點:數學院大會議室
主辦單位:煙臺大學數學與信息科學學院
內容摘要:
In this talk, we develop a Bayesian semiparametric AFT model for survival data with cluster structures (BSP-DRM). We show through both simulation studies and analysis of Mayo clinic trial in PBC that the information pooling can significantly improve the efficiency of estimating regression coefficients in the AFT models. Moreover, the flexible accommodation of distributional heterogeneity greatly reduces potential estimation biases, and also improves estimation efficiency when the distributions of different clusters have different shapes.
主講人介紹:
蘭州大學碩士、北京大學博士;主要從事生存分析、不完全數據分析、經驗似然、 半參數模型推斷、 Bayes 統計學等方面的研究. 在 J. Amer. Statist. Assoc.、Comput. Statist.、Data Anal.、Statist. Papers、 Ann. Inst. Statist. Math.、 J. Multivariate Anal.、Statist. Probab. Lett.等國際著名學術刊物發表論文16篇. 主持完成了國家自然科學基金青年基金項目和博士后基金項目.