彩票网-捕鱼

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“兩校名師講堂”學術預告263—Mixed Finite Element Methods of Elasticity Problems
作者:     日期:2018-11-14     來源:    

講座主題:Mixed Finite Element Methods of Elasticity Problems

專家姓名:胡俊

工作單位:北京大學

講座時間:2018年11月16日17時0分

講座地點:數學學院340

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

The problems that are most frequently solved in scientific and engineering computing may probably be the elasticity equations. The finite element method (FEM) was invented in analyzing the stress of the elastic structures in the 1950s. The mixed FEM within the Hellinger-Reissner (H-R) principle for elasticity yields a direct stress approximation since it takes both the stress and displacement as an independent variable. The mixed FEM can be free of locking for nearly incompressible materials, and be applied to plastic materials, and approximate both the equilibrium and traction boundary conditions more accurate. However, the symmetry of the stress plus the stability conditions make the design of the mixed FEM for elasticity surprisingly hard. In fact, ``Four decades of searching for mixed finite elements for elasticity beginning in the 1960s did not yield any stable elements with polynomial shape functions" [D. N. Arnold, Proceedings of the ICM, Vol. I : Plenary Lectures and Ceremonies (2002)]. Since the 1960s, many mathematicians have worked on this problem but compromised to weakly symmetric elements, or composite elements. In 2002, using the elasticity complexes, Arnold and Winther designed the first family of symmetric mixed elements with polynomial shape functions on triangular grids in 2D.

The talk presents a new framework to design and analyze the mixed FEM of elasticity problems, which yields optimal symmetric mixed FEMs. In addition, those elements are very easy to implement since their basis functions, based on those of the scalar Lagrange elements, can been explicitly written down by hand. The main ingredients of this framework are a structure of the discrete stress space on both simplicial and product grids, two basic algebraic results, and a two-step stability analysis method.

主講人介紹:

胡俊, 北京大學數學科學學院教授、黨委書記, 國家杰出青年基金獲得者。 主要從事非標準有限元方法,特別是彈性力學問題及相關問題的非標準有限元方法的構造、數值分析及自適應有限元方法等方面的研究。發表相關領域的論文60余篇,曾獲中國計算數學學會的“首屆青年創新獎”,全國百篇優秀博士學位論文和德國洪堡研究獎學金等榮譽。 現任三個國際期刊的編委和北京計算數學學會理事長。

钱柜娱乐城现金网| 全讯网赢足一世| 真人百家乐官网攻略| 网络百家乐路子玩| 大发888皇冠娱乐城| 七胜百家乐官网赌场娱乐网规则 | 百乐坊娱乐城噢门| 皇冠足球投注| 百家乐网络赌场| 百家乐官网pc| 屏南县| 菲律宾太阳城网| 百家乐网址讯博网| 百家乐官网巴厘岛平台| 百家乐出千桌| 博发百家乐官网的玩法技巧和规则| 大发888鸿博博彩| 威尼斯人娱乐城网上赌场| 皇冠百家乐官网在线游戏| 大发888我发财| 百家乐官网庄闲出现几| 泰盈娱乐城| 太阳城丝巾| 喜来登百家乐的玩法技巧和规则| 百家乐官网发牌器8副| 百家乐桌子租| 百家乐官网双峰县| 娱乐城注册送现金| 视频百家乐官网赌法| 淮南市| 去澳门百家乐官网的玩法技巧和规则| 中金时时彩平台| 百家乐又称为什么| 百家乐官网博彩策略| 百家乐秘籍下注法| 澳门百家乐官网赌场网址| 真钱的棋牌游戏网站| 百家乐娱乐开户| 博彩网百家乐官网中和局| 百家乐开发| 网上百家乐解密|