彩票网-捕鱼

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“兩校名師講堂”學術預告263—Mixed Finite Element Methods of Elasticity Problems
作者:     日期:2018-11-14     來源:    

講座主題:Mixed Finite Element Methods of Elasticity Problems

專家姓名:胡俊

工作單位:北京大學

講座時間:2018年11月16日17時0分

講座地點:數學學院340

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

The problems that are most frequently solved in scientific and engineering computing may probably be the elasticity equations. The finite element method (FEM) was invented in analyzing the stress of the elastic structures in the 1950s. The mixed FEM within the Hellinger-Reissner (H-R) principle for elasticity yields a direct stress approximation since it takes both the stress and displacement as an independent variable. The mixed FEM can be free of locking for nearly incompressible materials, and be applied to plastic materials, and approximate both the equilibrium and traction boundary conditions more accurate. However, the symmetry of the stress plus the stability conditions make the design of the mixed FEM for elasticity surprisingly hard. In fact, ``Four decades of searching for mixed finite elements for elasticity beginning in the 1960s did not yield any stable elements with polynomial shape functions" [D. N. Arnold, Proceedings of the ICM, Vol. I : Plenary Lectures and Ceremonies (2002)]. Since the 1960s, many mathematicians have worked on this problem but compromised to weakly symmetric elements, or composite elements. In 2002, using the elasticity complexes, Arnold and Winther designed the first family of symmetric mixed elements with polynomial shape functions on triangular grids in 2D.

The talk presents a new framework to design and analyze the mixed FEM of elasticity problems, which yields optimal symmetric mixed FEMs. In addition, those elements are very easy to implement since their basis functions, based on those of the scalar Lagrange elements, can been explicitly written down by hand. The main ingredients of this framework are a structure of the discrete stress space on both simplicial and product grids, two basic algebraic results, and a two-step stability analysis method.

主講人介紹:

胡俊, 北京大學數學科學學院教授、黨委書記, 國家杰出青年基金獲得者。 主要從事非標準有限元方法,特別是彈性力學問題及相關問題的非標準有限元方法的構造、數值分析及自適應有限元方法等方面的研究。發表相關領域的論文60余篇,曾獲中國計算數學學會的“首屆青年創新獎”,全國百篇優秀博士學位論文和德國洪堡研究獎學金等榮譽。 現任三個國際期刊的編委和北京計算數學學會理事長。

网络百家乐官网路子玩| 赌场百家乐官网信誉| 三公百家乐在线哪里可以玩| 贵族百家乐的玩法技巧和规则| 百家乐官网现金网平台排名| 足球.百家乐投注网出租| 百家乐官网分路单析器| 赌博百家乐官网下载| 百家乐十佳投庄闲法| 德州扑克大赛视频| 真人百家乐官网是骗局| 网上百家乐网| 百合百家乐官网的玩法技巧和规则 | bet365v网卡| 百家乐棋牌辅助| 大富豪棋牌游戏下载| 广州百家乐娱乐场| 百家乐官网扑克桌| 喜達博彩网| 百胜百家乐软件| 澳门百家乐官网技术| 喜達博彩网| 波克棋牌游戏大厅下载| 老钱庄百家乐的玩法技巧和规则| 百家乐官网群shozo权威| 百家乐分析| 网络百家乐破解平台| 新濠峰百家乐官网的玩法技巧和规则 | 五张百家乐的玩法技巧和规则| 张家港市| 火箭百家乐的玩法技巧和规则| 百家乐路子分析| 太阳城百家乐官网币| 大赢家娱乐城信誉| 大发888注册送58网站| 百家乐怎么赢9| 百家乐官网计划软件| 娱乐城百家乐官网的玩法技巧和规则 | 模拟百家乐下| 百家乐在线娱乐场| 单机百家乐的玩法技巧和规则|