彩票网-捕鱼

學術預告 首頁  >  學術科研  >  學術預告  >  正文

學術預告—An efficient second-order linear scheme for the phase field model of corrosive dissolution
作者:     日期:2019-12-04     來源:    

講座主題:An efficient second-order linear scheme for the phase field model of corrosive dissolution

主持人:李宏偉

工作單位:山東師范大學

講座時間:2019年12月7日(周六)下午16:10--16:50

講座地點:數學院341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

We propose an efficient numerical scheme for solving the phase field model (PFM) of corrosive dissolution that is linear and second-order accurate in both time and space. The PFM of corrosion is based on the gradient flow of a free energy functional depending on a phase field variable and a single concentration variable. While classic backward differentiation formula (BDF) schemes have been used for time discretization in the literature, they require very small time step sizes owing to the strong numerical stiffness and nonlinearity of the parabolic partial differential equation (PDE) system defining the PFM. Based on the observation that the governing equation corresponding to the phase field variable is very stiff due to the reaction term, the key idea of this paper is to employ an exponential time integrator that is more effective for stiff dynamic PDEs. By combining the exponential integrator based Rosenbrock--Euler scheme with the classic Crank--Nicolson scheme for temporal integration of the spatially semi-discretized system, we develop a decoupled linear numerical scheme that alleviates the time step size restriction due to high stiffness. Several numerical examples are presented to demonstrate accuracy, efficiency and robustness of the proposed scheme in two-dimensions, and we find that a time step size of $10^{-3}$ second for meshes with the typical spatial resolution $1~\mu$m is stable. Additionally, the proposed scheme is robust and does not suffer from any convergence issues often encountered by nonlinear Newton methods.

主講人介紹:

山東師范大學數學與統計學院副教授,碩士生導師。2012年獲香港浸會大學博士學位,2016-2017年獲國家留學基金委資助赴美國南卡羅來納大學進行學術交流。目前主要從事相場模型和無界區域上偏微分方程數值解法的研究工作。近年來先后主持國家自然科學基金、山東省自然科學基金3項,在J. Sci. Comput., Phys. Review E等雜志上發表論文多篇。

百家乐官网汝河路| 太阳城百家乐官网优惠| 鸿博开户| 百家乐视频游戏网址| tt娱乐城官网| 澳门百家乐威尼斯| 明升信誉| 百家乐官网l23| 百家乐庄家怎样赚钱| 澳门线上赌场| 百家乐官网博牌规| 全讯网qx1860.com| 网络百家乐官网电脑| 百家乐官网路单下注| 德州扑克高级教程| 亚洲百家乐的玩法技巧和规则 | 义乌市| 易胜国际| 亲朋棋牌游戏下载| 在线百家乐| 百家乐官网等投注网改单| 赌博投注| 大发888娱乐场下载yguard| 百家乐五子棋| 百家乐长龙怎么预判| 百家乐官网平注法到6568| 姚记百家乐官网的玩法技巧和规则| 太阳城酒店| 武汉百家乐庄闲和| 百家乐官网出老千视频| 新澳博百家乐现金网| 皇冠正网| 澳门百家乐官网赢钱技术| 百家乐电子路单谁| 真钱百家乐送钱| 万达百家乐官网娱乐城| 百家乐官网赢家打法| 如何看百家乐官网的路纸| 百家乐官网网站新全讯网| 宜昌市| 百家乐官网分析资料|